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Chapter 1

Introduction

Critical data science applications requiring frequent access to storage perform poorly on today’s computing
architectures. This project addresses efficient computation of data-intensive problems in national security
and basic science by exploring, advancing, and applying a new form of computing called storage-intensive su-
percomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for
a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance
over today’s data-intensive architectures.

This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive
Supercomputing during the period 05/07-09/07. The following chapters describe

• a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes

• an out-of-core graph benchmark for level-set expansion of scale-free graphs

• an entity extraction benchmark consisting of a pipeline of eight components

• an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline.

The performance of the graph and entity extraction benchmarks was measured in three different scenarios:
data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and
data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared
performance of software-only to GPU-accelerated.

In addition to the work reported here, an additional text processing application was developed that used
an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented
at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop.

The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash
40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows: SuperMicro X7DBE Xeon
Dual Socket Blackford Server Motherboard; 2 Intel Xeon Dual-Core 2.66 GHz processors; 1 GB DDR2
PC2-5300 RAM (2 x 512); 80GB Hard Drive (Seagate SATA II Barracuda). The Fusion board is presently
capable of 4X in a PCIe slot.

The image resampling benchmark was run on a dual Xeon workstation with NVIDIA graphics card (see
Chapter 5 for full specification). An XtremeData Opteron+FPGA was used for the language classification
application.

We observed that these benchmarks are not uniformly I/O intensive. The only benchmark that showed
greater that 50% of the time in I/O was the graph algorithm when it accessed data files over NFS. When
local disk was used, the graph benchmark spent at most 40% of its time in I/O. The other benchmarks were
CPU dominated. The image resampling benchmark and language classification showed order of magnitude
speedup over software by using co-processor technology to offload the CPU-intensive kernels.

Our experiments to date suggest that emerging hardware technologies offer significant benefit to boosting
the performance of data-intensive algorithms. Using GPU and FPGA co-processors, we were able to improve
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performance by more than an order of magnitude on the benchmark algorithms, eliminating the processor
bottleneck of CPU-bound tasks. Experiments with a prototype solid state nonvolative memory available
today show 10X better throughput on random reads than disk, with a 2X speedup on a graph processing
benchmark when compared to the use of local SATA disk.

The SISC team in May-Oct 2007 was as follows: Jon Cohen, Lisa Corsetti, Don Dossa, Maya Gokhale,
Eric Greenwade, John Grosh, David Hysom, Arpith Jacob, John Johnson, Scott Kohn, Vijay Kumar, John
May, Marcus Miller, Roger Pearce, Craig Ulmer (Sandia CA), Andy Yoo.
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Chapter 2

IOtrace Tool

2.1 Tracing I/O Behavior

An important aspect of understanding I/O performance is knowing how different applications interact with
the file system. To monitor these interactions, we have developed a library called iotrace that records the
details of each call to any of a selection of low- and high-level I/O routines, such as open, close, read,
write, fopen, and fscanf. Our library requires no changes to the monitored application; the user simply
interposes iotrace between the application and the dynamically-linked I/O libraries using standard Linux
techniques. (Similar techniques are available under other operating systems, including AIX, but we have not
yet ported iotrace to these systems.)

The iotrace library can store trace data in a text format that can be imported into a spreadsheet or
the PerfTrack [11] performance database. It can also store data in a more compact binary format. We have
written a companion program that reads binary files and produces a series of graphical summaries of the
I/O traces.

This chapter describes the usage, design, and limitations of iotrace, and it notes areas for further
development.

2.1.1 Using iotrace

Once iotrace has been built and installed (as described in the documentation that accompanies it), an
application’s I/O activity can be monitored as follows:

env LD PRELOAD=/full/path/iotrace.so myapp args...

The env command runs the specified application (in this case, myapp) with one or more specified
additional environment variables set. LD PRELOAD is a standard Linux variable that causes the named
library to be loaded dynamically before any of the application’s other dynamic libraries. As a result, the
open, close, read, write and other functions in iotrace.so are called instead of the standard versions.
The iotrace versions of these functions forward the calls to their standard counterparts and then record
trace data for each call.

The example above shows how to apply iotrace to a single command. If the user sets LD PRELOAD
to point to iotrace.so in the shell environment, then all subsequent commands will use have their I/O
activity monitored. This should work correctly, and by default (see below) iotrace will create a separate
log file for each process, but the amount of data generated in this way could be overwhelming.

Currently, iotrace monitors the following functions:

open close read write
fopen creat fopen64 open64
fscanf fread fwrite fclose

3



The technique for monitoring calls is generic, so additional functions could be included relatively easily.
I/O operations on stdin, stdout, stderr and on the log file itself are not logged.

Environment variables

Several environment variables are available to control the behavior of iotrace. These may be set as part of
the env command, or they may be set in the shell environment.

IOTRACE APPNAME This variable tells iotrace the name of the application being monitored. (The
library has no access to the command line, so it cannot determine this automatically.) This information
can be used in two ways: as part of the name of the log file, and in the output data itself. If the variable
is not set, iotrace uses the default name unknown. See the description of the IOTRACE LOGFILE
environment variable, below, for a complete description of how the log file name is set.

IOTRACE BINARY Set this variable to the word true to output the log file in a more compact (but
less portable) binary format. If the variable is not set or if it is set to any other value, the log file is
written in text format.

IOTRACE EXECNAME This variable, if set, should contain a string that uniquely identifies a particular
execution of the target application. For example, it could contain the application name followed by a
process identifier or a time stamp. As with IOTRACE APPNAME, this text can be used both in the
log file name and in the data output. If the text contains either %d or %i, iotrace will substitute the
process identifier of the application for this format string. (No more than one format command should
appear in the name, and since iotrace passes this text directly to snprintf, using any other format
command in the text could produce gibberish.) If this variable is not set, the execution name defaults
to appname.pid , where appname is the value of IOTRACE APPNAME (or its default), and pid is
the process identifier of the running application.

IOTRACE LOGFILE This variable contains the name to use for the log file. As with the
IOTRACE EXECNAME, it may contain a %d or %i format command, with the same functionality
and caveats. If output is in binary form, a file named as specified will contain the main output,
and a second file with the suffix .summary will contain additional (ASCII-formatted) summary
data. For text-format output, there is no summary file. If this variable is not set, then the name
of the log file file is execname log.tsv for text-formatted output and execname log.bin and ex-
ecname log.bin.summary for binary output. Given the rules stated above for defaults, if no en-
vironment variables are set, iotrace will write the log file in text format, and the file will be called
unknown.pid log.tsv.

Output formats

A text-format log file consists of a header line listing the names of the columns followed by rows of tab-
separated values, one for each I/O event that was monitored. Many spreadsheet and graphics programs, as
well as the PerfTrack performance database, can read this file format. Table 2.1 lists the columns in the log
file.

The iotrace library will normally create a separate log file for each process, so a parallel job will create
one log per task. Multithreaded processes will create a single file. When a single job uses several processes,
it important to ensure that each process uses a different file, since iotrace will not reopen a log file that
already exists.

The binary format is designed to save disk space and I/O overhead for applications that write large
volumes of data. The disadvantage of this format is that it is not portable between architectures (for
example, between 32- and 64-bit machines, or big-endian and little-endian machines.) Also, the file can only
be read by the iotrace data parsing tool and cannot be imported into other applications.

The binary output is written in two files, one with the suffix .summary and the other .bin. The
.summary file maintains general summary information in text format about the overall process and every
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Column name Contents
Application Application name, as specified in

IOTRACE APPNAME, or its default
Execution Execution name, as specified in

IOTRACE EXECNAME, or its default
Tool Always “IOTRACE”
Filename Name of file on which operation was done, as

specified in the call that opened it
fd Unix file descriptor for the file
Op sequence Sequence number for this operation, starting

with 0 for the first I/O call in the application.
(This number guarantees that every line in the
log will be unique.)

Operation Name of the I/O call
Bytes Actual number of bytes transferred in the

operation, or 0 for calls (such as open) that
transfer no data, or −1 if the call resulted in an
error

start time System clock time (in seconds) when operation
began

end time System clock time (in seconds) when operation
ended

Time (sec) Difference between start time and end time
PID Process ID for this execution

Table 2.1: Output columns for the iotrace text-format log file.

5



Data Field Contents
App Name Application name, as specified in

IOTRACE APPNAME, or its default
Exe Name Execution name, as specified in

IOTRACE EXECNAME, or its default
Tool Name Always “IOTRACE”
Binary Trace File Filename that holds the .bin trace output
Total Num IO events The total number of I/O events captured
Total IO bytes The total number of bytes moved during execution
Total IO time The total time spent in I/O routines
Start Time System clock time (in seconds) marking the start

of process execution
End Time System clock time (in seconds) marking the end

of process execution
Number of Files Total number of files used during execution
File Level statistics, see Table 2.3

Table 2.2: Output data in the iotrace .summary file.

Column Name Contents
Filename Name of file on which operation was done, as

specified in the call that opened it
Total Number Read Total number of read operations for a given file
Total Bytes Read Total number of Bytes read for a given file
Total Time Read Total amount of time reading a given file
Total Number Write Total number of write operations to a given file
Total Bytes Write Total number of Bytes written to a given file
Total Time Write Total amount of time spent writing to a given file
Global File ID Unique mapping for this file used with the .bin

file
fd Unix file descriptor for the file

Table 2.3: File-level summary data in the iotrace .summary file

file handle used throughout execution. An overview of the .summary can be found in Tables 2.2 and 2.3.
Among other things, this file is responsible for maintaining a unique file mapping that is used with the .bin
trace data. The .bin file holds a sequence of binary records described in Table 2.4, the data width of each
record may vary on different platforms.

Tracing Java programs

The iotrace library can record the I/O behavior of Java programs simply by including it in the Java
command line:

javac Myclass.java
env LD PRELOAD=iotrace.so java Myclass

The library will capture the I/O events from both the Java program and the Java Virtual Machine, but
since the log file will record the file name for each operation, it should be easy to separate the application
I/O from Java’s.
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Data Field Contents
unsigned long long int bytes Number of Bytes in this I/O event
unsigned long long int file offset Byte offset into file before I/O event
double start time System clock time (in seconds) when operation

began
double end time System clock time (in seconds) when operation

ended
pid t pid Process ID for this execution
io operation io op An enumeration value representing the type of

operation (open, close, read, write, etc.)
int gfid Global File Id, mapped using the .summary file

Table 2.4: I/O event record data in the iotrace .bin file

Plotting data from binary files

A C++ tool has been developed to parse and plot the .summary and .bin iotrace output. Four plot
formats are currently supported:

Plot Type Description
Accumulated non-IO time Plot of accumulated time between I/O calls vs.

total process running time
Accumulated IO time Plot of accumulated Time in read/write vs. total

process running time
Accumulated Bytes Moved Plot of accumulated Bytes moved in read/writes

vs. total process running time
Time-slice Bytes moved Plot of Bytes in I/O per time-slice

2.1.2 Design of iotrace

The iotrace library uses a well-established technique for intercepting library calls in Linux, namely the
LD PRELOAD environment variable. When Linux loads an application with dynamically linked libraries,
it first loads libraries listed in LD PRELOAD. This means that when the application make calls to standard
library functions, it will look for them first in the preloaded libraries. Our library includes functions that
match the signatures of the standard I/O functions listed earlier, so calls to these functions go to our
library. Each of the listed functions in iotrace first does some initialization (if no function in our library has
been called previously) and then records the current system time before calling the original version of the
corresponding function to complete the user’s request. After the call returns, the iotrace function records
the system time and the return value of the underlying call, and it stores this data in the log file. To find
the underlying version of each system call that it intercepts, iotrace uses the dlsym function to look up the
next version of the function in the list of the dynamically loaded libraries. This search need only be done
once per function each time the monitored application runs.

All of this depends on the application being dynamically linked, which is the default in Linux. We have
not experimented with using iotrace on statically linked applications.

Some programs fork and create child processes. Usually, the child processes inherit the parent’s environ-
ment variables, so they too will see the LD PRELOAD variable and load the iotrace library. Since a child
process initially inherits its parent’s entire address space, it will also contain a copy of the iotrace data
structures and open file descriptors from the parent. Therefore, if a child process does I/O before it calls
exec to load a new executable, these operations will be recorded in the parent’s log file. However, once the
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child loads a new executable, it will reload the iotrace library with independent copies of its data structures
and initialize a new log file. (There is a hazard that if the parent and child do concurrent I/O operations
before the child calls exec, then their simultaneous access to the log file could corrupt it. In practice, child
processes rarely read and write data before they call exec.)

The iotrace library supports multithreaded programs by placing locks around accesses to its internal data
structures. The library must be compiled with thread support for this to work. This allows nonthreaded
programs to link an nonthreaded version of iotrace, which is slightly more efficient and which does not
require the pthreads library to be available.

2.1.3 Limitations

Because iotrace is built on the Linux LD PRELOAD mechanism, it is subject to certain limitations. Some
higher-level I/O operations in the C Standard Library call lower level functions, such as read and write.
However, since these high-level and low-level functions all reside in the same library, iotrace cannot intercept
calls between them. For example, when fscanf calls read to input its data, iotrace cannot intercept this
intra-library call. Instead, iotrace can only include fscanf among its intercepted calls.

Conversely, other Standard Library functions’ I/O operations cannot be traced because they use lower-
level mechanisms for reading and writing data. The best example of this is the mmap call, which lets users
specify a file as the backing store for an out-of-core data structure. The operating system uses its internal
page fault mechanism to support this functionality, which operates below the level of the Standard Library’s
read and write calls. As a result, iotrace cannot monitor the paging activity that mmap generates.

Our library is designed primarily to monitor the pattern of I/O requests that an application generates,
and only to a lesser extent the file system’s response to them. Although we have attempted to make the
monitoring of each I/O call as efficient as possible, some overhead is inevitable, and since trace data is
recorded to the file system (which may or may not be the same one that the application is using), iotrace
may compete with the application for storage resources. However, in most cases, this interference does not
affect the number, size, or type of I/O requests that an application issues. The main area of potential
interference is in the timing of I/O requests. We exclude much of the iotrace overhead from the reported
I/O times, and what remains should be small compared to the cost of most I/O operations. However, it’s
conceivable that an application might make many short I/O requests, and that iotrace could introduce
significant delays at the beginning and end of each of these calls. This overhead would appear to be part of
the compute time of the application (rather than the I/O time), so the overall ratio of compute time to I/O
time, and the time interval between individual calls, could be distorted when iotrace is in use.

2.1.4 Future work

The iotrace library could be extended in a number of ways, depending on user needs. The most simple
extension is to increase the number of I/O calls that it monitors. Another easy modification would be to
allow users to insert tags into to log file by calling a specified function from the application. These tags
would allow the user to record application events of interest so that the log file could be interpreted more
easily. Of course, making direct calls to iotrace would mean changing the user’s source code, which is not
currently required. It would also mean that the application source would need to include an iotrace header
file to declare the logging function and then link iotrace directly into the executable, rather than using the
LD PRELOAD mechanism.

While the binary file format reduces the size of trace files somewhat, applications can still generate many
gigabytes of trace data, which may quickly become unmanageable. Instead of recording individual data on
each I/O event, iotrace could manage an ongoing statistical summary of events, which would remain in
memory until the application finished executing. This summary could be in the form of a histogram or
a set of statistics about the I/O operations seen. This approach would require substantially less storage
than tracing, but it would also limit the types of analysis that could be done on the data once it had
been generated. Maintaining statistics in real time might also increase the monitoring overhead modestly.
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However, the cost of the additional computation would probably be small compared to the time saved by
not writing full trace data to disk.
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Chapter 3

An External Memory Benchmark for
Large Semantic Graph Analysis

3.1 Description of Graph Benchmark

Many graph applications are highly memory-intensive, while their computation and communication demand
is very low [14]. The memory-intensive nature of graph applications has an even greater impact on the
performance when the graph is stored in and accessed from external storage. There are particular issues
that one needs to consider when developing out-of-core (OOC) graph applications. First, how the graph
data is represented and stored has significant impact on performance due to the characteristics of external
disk storage devices: long latency and block I/O. Another important issue is the construction of an indexing
structure to efficiently locate graph elements. Finally, the graph application must carefully arrange the order
it accesses graph elements. We have developed a benchmark to capture the computational and memory access
behavior of typical external memory graph applications with these issues in mind. The graph benchmark
ingests a graph into the external storage and then searches the ingested graph. A detailed description of the
benchmark follows.

3.1.1 Underlying data management system

The benchmark relies on SGRACE (Streaming GRAph Clustering Engine), a graph data management system
designed to support the efficient storage and retrieval of large streaming graphs and to manage and access
the graph. The SGRACE stores graphs in such a way that the number of I/Os is minimized and enables
users to quickly explore the structure of the graphs. Figure 3.1 depicts the SGRACE architecture.

The SGRACE consists of two components based on flat files, the partition index files and the partition
files. These two sets of files are used to store adjacency lists that represent the given graph. A set of vertices
that are adjacent to a source vertex are stored in a partition file (PARTITION). The location of a group
of adjacent vertices in PARTITION is kept in an entry in PIF, and each entry is indexed by the vertex ID.
In order to retrieve all the vertices adjacent to v, we first retrieve the location, l, of the adjacent list from
a PIF entry using the ID of v, and then retrieve the adjacent vertices from PIF, located by l. It should
be noted that the adjacency lists are not necessarily stored in contiguous locations in a partition file, but
rather in non-contiguous set of chunks chained together as shown in Figure 3.1, because it is unlikely that all
the adjacent vertices arrive at the system at the same time. Retrieving a complete adjacency list, therefore,
usually requires several pointer-chasings.
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Figure 3.1: The architecture of SGRACE graph data management system

In−memory Edge Buffer In−memory Adjacency Buffer PIF

Partition Files
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Figure 3.2: Ingestion of streaming graph

3.1.2 Graph benchmark

Typical OOC graph applications are usually optimized to reduce the number of disk IO operations, since
each operation involves significant overhead in terms of latency. To reduce the number of disk accesses, the
use of main memory should be maximized and accesses to disk should be performed in batch. Furthermore,
the data is brought into the memory by blocks, and the disk accesses are sequentialized to reduce the latency.
The benchmark models this behavior of OOC applications.

Graph ingestion

The graph ingestion phase of the benchmark reads streaming edges of a graph, builds a subgraph that
consists of the new edges, and then writes the constructed subgraph to the storage. The ingestion code uses
two in-memory buffers, edge buffer and adjacency buffer, to store incoming edges and a subgraph that is
comprised of the edges read, respectively.

Figure 3.2 illustrates the ingestion process. First, incoming edges are read and stored in the edge buffer.
When the edge buffer becomes full, all the edges in the edge buffer are merged into the subgraph being
constructed in the adjacency buffer. The subgraph in the adjacency buffer is maintained as a set of adjacency
lists. When an edge is merged, it is added to a group of vertices in an adjacency list that share the same
source vertex. Given an edge, the adjacency list to which the edge should be merged is located by using an
in-memory hash table, indexed by the source vertex of the edge.

When the adjacency buffer becomes full, the adjacency lists in the buffer are written to the external
storage. The adjacency lists are sorted first by the source vertex IDs. This is to access PIF files in a
sequential order. Given an adjacency list, an entry in the PIF file for its source vertex is read to check if
the vertex and its adjacent vertices have been written to the storage previously. If the vertex is new, the
location in the partition file where its adjacent vertices will be stored is determined and recorded in the PIF
file entry. The location in the partition file is also recorded in a separate array for the writes to be performed
later. If the source vertex is already in the storage, then the location of the last existing block that contains
adjacent vertices is recorded in the array and the PIF entry is updated accordingly. Actual writes to the
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Figure 3.3: Level set expansion operation

storage are performed by reading the information recorded in the array, which is sorted first to sequentialize
the accesses. These writes are all append operations. Newly appended blocks are linked to an existing block
if necessary, which requires additional accesses to the partition files.

3.1.3 Graph search

The search portion of the benchmark performs a well-known graph search operation called level set expansion,
which is an extension of classic breadth-first search (BFS). In the level set expansion, search starts from an
arbitrary vertex1. A set of vertices called level set is built at each level. The initial frontier consists of a single
vertex, which is the starting vertex. A level set is expanded to the next level by constructing a new level
set (for the next level) consisting of vertices that are adjacent to the vertices in the current level set. Any
vertices that have been visited previously are excluded from the new level set. This process of expanding
level sets continues until all the vertices in the graph are visited.

Just as in BFS, two data structures are used: two queues to hold the vertices in the current and next
level sets (Qs) and a bit-map to mark visited vertices (V I). In the benchmark, these two data structures
are implemented as semi-external data structures. A semi-external data structure refers to a data structure
in which part of its data is stored externally. When these data structures are accessed, the accesses are
performed in batch in a sequential order as in the ingestion.

First, a portion of the current level set is read from a queue containing the level set to a memory buffer.
Any vertices that have already been visited are then filtered out by checking V . For the remaining vertices
in the buffer, the search code marks them as visited in V and collects the adjacent vertices from the PIF
and PARTITION files. The collected vertices are stored in another queue that represents the next level set.
This repeats until both queues become empty. The level set expansion operation is illustrated in Figure 3.3.

3.2 Performance Evaluation

We ran the graph benchmark to profile its I/O behavior on the Fusion-io server. Its performance was
measured using iotrace discussed in Chapter 2.

The graph data is accesses from three different storage devices: Fusion-io NAND Flash array on PCIe,
local SATA disk, and on a NFS-mounted RAID. These storage devices differ from each other in terms of
latency, communication involved, and asynchrony in read/write speeds.

The performance was measured with various input parameters. A wide range of different graphs are
used including real graphs such as Kompass [9] and IMDB [13] and a set of synthetically generated scale-
free graphs [7]. Different block sizes are used, where a block is a unit of read and write operation. Block
read/write usually reduces the number of I/O operations if the application has good locality.

1In the benchmark the starting vertex is always vertex 0.

12



Graphs Op. Dev. Execution Time (Sec) (I/O %)
256B 512B 1 KB 2 KB 4 KB 8 KB

N 104.9 (30) 100.1 (31) 95.3 (28) 95.7 (30) 102 (35) 103.5 (36)
I L 74.8 (5.4) 70.5 (4.6) 69 (4.6) 67.3 (4.1) 67 (4.2) 67.3 (4.3)

IMDB F 77 (6.6) 72 (5.6) 69 (4.9) 68.7 (4.8) 68.7 (5.7) 68.6 (5.9)
N 122 (37) 108.8 (36) 98.3 (33) 93.4 (32) 93.1 (35) 91.5 (38)

S L 134 (46) 127.8 (49) 118.3 (49) 119.6 (51) 116.4 (50) 115.1 (50)
F 96.7 (25.6) 85.8 (25) 81.3 (25) 78 (24.7) 75.8 (24.8) 74.4 (24.5)
N 54.9 (66) 47.8 (71) 41 (69) 36.3 (62) 49 (70) 47 (76)

I L 16.1 (10) 12.4 (4.4) 11.6 (4.7) 11.3 (3.5) 11.1 (3.3) 11.1 (3.7)
DBLP F 13.8 (7.5) 12.3 (5.6) 11.6 (4.6) 11.3 (4.1) 11.4 (5.2) 11.7 (5.3)

N 65.3 (51) 28.6 (50) 63 (55) 56.2 (33.8) 58.7 (33.7) 53.3 (47.3)
S L 46.8 (35) 43.5 (37) 42.2 (37) 44.7 (39) 42.4 (34) 38 (38)

F 23.6 (28) 21.9 (27.7) 21.1 (28) 20.8 (28) 20.5 (28) 20.3 (27)
N 72.3 (27) 63 (23.4) 63 (25) 60.8 (23) 64 (28) 67 (31)

I L 54 (7.2) 54 (12.3) 49 (5.8) 48 (5.7) 48 (5) 50 (8.7)
S45,1M,5 F 55.5 (6.3) 52 (4.8) 48.7 (4.2) 48 (4) 49.4 (4.4) 47.7 (4.8)

N 163.3 (38) 133 (41) 100 (31) 85 (26) 83 (30) 82 (31)
S L 139 (35) 141 (50) 103 (40) 95.3 (40) 94.5 (41) 91.5 (40)

F 125 (22.4) 101 (21) 89.6 (20) 79 (20) 82.5 (18.7) 80 (18)

Table 3.1: Comparison of the graph benchmark performance for varying parameters. Symbols N, L, and
F denote the network storage, local disk, and Fusion-io board, respectively. The total execution time
presented includes the I/O time. A graph SI,V,D denotes a synthetic graph with V vertices and average
degree of D, where there I high-degree vertices called hubs. The internal edge and adjacency buffers used in
the experiments have 2 million and 1 million entries respectively.
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Table 3.1 compares the ingestion and search performance of the graph benchmark for different graphs
and block sizes. Two real graphs, IMDB [13] and DBLP [10], and a synthetic graph with 1 million vertices
and the average degree of 5 was used in the experiment. The input data is read from the same storage
device where PIF and PARTITION files are stored. The total execution time and I/O time are measured.
In Table 3.1, the I/O time is given as the percentage of the total execution time.

The results show that for some configurations, the benchmark is indeed I/O-intensive. This is particularly
true for the search portion of the benchmark, where the code spends as much as 70% of its time for the I/O
operations when accessing NFS-mounted data. Even when the data is stored in local storage devices for
which there is no network communication overhead involved, the search code spends about 20% or more of
its time to access externally stored data.

Figure 3.4, which presents the volume of the data read and written during run-time on local disk and
Fusion-io, captures the I/O behavior of the benchmark. In this experiment, 4 KB blocks are used. The
graph shows that the ingestion phase of the benchmark exhibits a regular access pattern. This is due to the
systolic way in which the ingestion code operates; it repeats the process of reading, processing, and dumping
the data. On the other hand, the search phase of the benchmark has a more irregular access pattern. This
is because the search involves more files to access at the same time compared to the ingestion. This greater
number of accesses increases the interference among concurrent file I/Os, and in turn, increases the I/O
overhead. In addition, the search requires more reads than writes. Such behavior should favor the Fusion-io
over the local disk, because the read from the Fusion-io is orders of magnitude faster than that from a typical
hard disk. This is clearly shown in Table 3.1.

Figures 3.5 and 3.6 measure the impact of the block size on I/O performance. Two factors that affect the
I/O performance of an application are the block size and the locality of the application. Graph applications
usually have poor locality, but in the benchmark, the negative impact of the poor locality is reduced by
sequentializing the accesses. When data is accessed from a network storage device, the block size affects the
performance significantly due to the large overhead accessing the data. The effect of block size for network
storage device was not shown in the figures. The figures show that the block size has little impact on the read
and write performance except for the small block size (256B), which increases the number of I/O operations.
Again, the search performance on Fusion-io is better than on local disk for aforementioned reason.

3.3 Conclusions

A graph application benchmark is developed in this work. The benchmark, based on a graph data manage-
ment system called SGRACE, ingests streaming graphs and performs search in the form of level-set expansion.
We have evaluated the performance of different storage devices using the benchmark and presented results.
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(a) Ingestion on local disk (b) Search on local disk

(c) Ingestion on Fusion-io (d) Search on Fusion-io

Figure 3.4: Ingestion and search performance of the benchmark for the IMDB graph when data is accessed
from local disk and Fusion-io.
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Figure 3.5: I/O performance of benchmark on local disk for DBLP citation graph
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Figure 3.6: I/O performance of benchmark on local disk for the Internet Movie Database (IMDB) graph
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Chapter 4

The Livermore Entity Extraction
Benchmark

4.1 Introduction

The Livermore Entity Extraction (LexTrac) pipeline addresses a data intensive problem of interest to national
security: the automatic identification of references to entities, such as people, organizations, and locations, in
free (a.k.a, unstructured) text. Entity extraction is an essential early step in populating the various Semantic
Graphs that are increasingly being used by analysts for knowledge discovery and Homeland Defense.

There is, and will continue to be, a need to ingest and analyze millions of free text documents daily. This
need far outstrips analysts’ abilities to examine such documents manually. LLNL has been positioning itself
to address these needs, and has committed itself to ongoing research and development in this area. However,
as far as we are aware, little to no effort has been devoted to understanding how entity extractors and related
applications, such as relationship extractors, interact with file systems. This is true not only at LLNL, but in
the broader academic and open-source arenas. Painting with broad brush-strokes, the larger community is
mostly concerned with developing and testing algorithms for automatic content extraction that work with a
high enough degree of accuracy to be useful. In contrast, our interest here is to understand the I/O patterns
of typical Natural Language Processing (NLP) applications. This knowledge will be essential as the NLP
field matures, and enters the realm of storage-intensive supercomputing.

LexTrac is suitable as an NLP I/O benchmark for several reasons. First, as discussed below, it is an
actual application that has been deployed in several projects, both inside LLNL and externally. Second, it was
designed and implemented to fill an immediate need, hence, was not highly optimized for I/O performance.
In this sense it is typical of the vast majority of extant NLP applications. Finally, LexTrac is not a monolithic
code. Rather, it is a set of modules tied together by the file system. While some modules were developed at
LLNL, others derive from the Open Source world. Each module can be examined independently, and each
has distinct I/O characteristics. Therefore, leveraging LexTrac as a benchmark provides us with a suite of
benchmarks, rather than a single kernel or application.

4.2 Background

Prior to presenting results for LexTrac I/O usage patterns, we discuss LexTrac’s design and functionality,
and present background material. Lextrac consists of a number of sequentially executing modules that (1)
pre-process XML-encoded documents; (2) perform entity extraction on free text; and (3) compute statistics
concerning those documents and the extracted entities.

Entity extraction is defined in Wikipedia as:

... a subtask of information extraction that seeks to locate and classify atomic elements in text
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into predefined categories such as the names of persons, organizations, locations, expressions of
times, quantities, monetary values, percentages, etc. [1]

The process of entity extraction is referenced in the literature by a variety of names, e.g, Named Entity
Recognition (NER), Entity Detection and Recognition (EDR), entity tagging, Semantic Tagging, and Entity
Identification. We use the term Entity Extraction throughout this report.

Most researchers categorize entity mentions into three types1

1. Named Entities are proper names, such as George Miller or Lawrence Livermore National Laboratory;

2. Nominals are descriptive words or phrases, such as the director or the laboratory;

3. Pronouns such as he, they, it.

The canonical example of free text is newswire articles, and the experiments reported herein took as
inputs XML-encoded Reuters News stories from the Reuters Corpora [2].

4.3 LexTrac Historical Design and Efficiency

The modules that comprise LexTrac derive from a variety of sources. Two of the modules, the Stanford
NER [3] and the OpenNLP NameFinder [4] are Open Source codes. The Keyword Extractor was originally
developed by David Buttler at LLNL. It, along with the UIMA wrappers we developed for the Open Source
codes, have been deployed internally (at LLNL) and externally in a variety of configurations. Additional
modules, such as the Tabulator and Proximator, were developed as the need arose and integrated into the
LexTrac pipeline.

4.4 Module Descriptions

In this section we present specifics on the modules that comprise the Lextrac Pipeline. All modules are
coded in Java. Each module is actually run as a separate UIMA [5] 2 pipeline executable.

1. The XML Parser is a simple hand-rolled parser that assumes the input XML documents are both
well-formed and valid.

2. The Keyword Extractor is a module developed by David Buttler at LLNL for efficient extraction of
words and phrases from a user-defined lexicon.

3. The Stanford NER [3] is a statistically based, Conditional Random Field (CRF) extractor; primary
author is Jenny Finkel, Stanford PhD student.

4. The OpenNLP NamFinder [4] is a statistically based maximum-entropy based extractor; primary
author is Tom Morton.

5. The Unifier is a “voting” module that, based on a comparison of the outputs of the three Entity
Extractors, outputs a confidence measure for each extraction.

6. The Proximator computes proximity information for entities within a document, i.e, how many words
separate each pair of extracted entities.

1An entity mention is a word or phrase in a text document that refers to a real world entity.
2The Unstructured Information Management Architecture (UIMA) originally developed by IBM, is a Java-based infrastructure
that supports the implementation, description, composition, deployment, and reuse of UIMA components and applications.
It contains a pipeline that consists of three components: a file reader; an analysis engine that wraps the essential modules
functionality; and a file writer. UIMA is used in several projects at LLNL.
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7. The Tabulator computes statistics such as frequency of punctuation marks, proportion of whitespace
in a document, percentage of upper-case characters, etc.

8. The Decider uses the output from the Tabulator to make a yes/no decision as to whether a document
most likely consists of sentence/paragraph free text, or tabular-like material such as stock market prices
or sports scores.

LexTrac was envisioned as a modular pipeline, such that additional entity extractors and related modules
could be easily inserted or deleted. Additional modules that have been used in LexTrac, but are not part
of this benchmark, include the LingPipe [6] and Oak Ridge [12] entity extractors, and a TrueCasing module
(designed to proper casing to all upper-case message traffic).

4.5 General I/O Considerations

The XML-parser reads a file from the input data set into memory; identifies the sections of interest to
LexTrac; deletes any XML and HTML markup within those sections, and writes the result to an output
file. In addition to extracting the free-text section (which is what the Entity Extractors will take as input),
additional sections such as headline, byline, dateline, etc. are saved.

All subsequent modules read the output file into memory; request one or more sections from the file;
perform their computations; append the result to a new section at the end of the file; and write the entire
output file back to disk. Hence, as the pipeline progresses, the output files increase in size.

4.6 Data set Description

The input data set for these experiments consisted of 3183 XML-encoded Reuters News stories from the
Reuters Corpora. [2] File sizes ranged from 1058 bytes to 33158 bytes. Figure 4.1 shows the distribution
of file sizes. Except for a few outliers, most files were under 10K bytes. Collectively, the input data set
contained 9.84M bytes. On conclusion of all processing, the output data set contained 49.4M bytes.

4.7 Performance Evaluation

We ran the LexTrac benchmark to profile its I/O behavior on a Linux machine equipped with the Fusion-io
board, and captured I/O performance via the iotrace tool (described in Chapter 2.1). Runs were performed
on three file systems: (1) an NFS (network) disk; (2) a local disk (/tmp); (3) the FLASH-based Fusion-io
board. Tables 4.1 and 4.2 contain summary statistics for execution timing and I/O operations.

Total execution time for the NFS disk was approximately 464 seconds. Total execution times for the
Fusion-io and local disks were 303 and 304 seconds respectively.

Per Table 4.2, the benchmark reads a total of approximately 500M bytes, writes just over 200M bytes,
for a read/write ratio of 2.42. Figure 4.2 contains a plot of cumulative bytes read/written with respect to
time. In this figure, as in others, the vertical line segments are artifacts we introduced during plotting in
order to indicate the boundaries of the eight modules. The rapid increase in bytes moved during the last four
modules has ramifications for the pipeline’s future development. Until undertaking this study we did not
realize the degree to which the policy of each module reading the entire output file, appending, and writing
back to disk, was affecting I/O. In the future, when and if LexTrac is funded for additional development,
the result of these experiments will certainly be taken into account.

Figure 4.7 accounts for all execution timing that was not involved in I/O activity. Since the plots for the
local and Fusion-io disks are indistinguishable, we present only the plot for the Fusion-io disk. There is a
noticeable “flattening” of the curve on both the left and right-hand portions of the plot for the local disk.
This is indicative of portions of the benchmark where I/O activity begins to consume greater proportions of
execution time.
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metric Execution Timing (sec)
NFS local fs Fusion-io

total 463.78 303.97 302.99
non I/O 307.67 299.87 300.34
I/O: read 1.25 0.93 0.69
I/O: write 0.39 1.59 0.67
I/O: open, close 154.48 1.59 1.27

Timing Ratio (percent)
I/O to non-I/O 50.7 1.4 0.9
read to write 321.4 58.4 103.0

Table 4.1: Summary timing statistics for the three filesystems tested. As expected, non-I/O timing is similar
for all three. By far the most significant difference in I/O performance was not, as expected, in reads or
writes, but in opening and closing files.

Statistic Bytes
total read 494.7M
total write 204.4M
read/write ratio 2.42
avg read size 3323
avg write size 5053

Table 4.2: Summary I/O statistics. The numbers in this table are independent of any particular file system.
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Figure 4.6: I/O time, NFS. I/O time is dominated by calls to open and close.

Figure 4.4 and 4.5 contain histograms showing the number of bytes moved per time-slice. Since the graphs
for the Fusion-io and local disks are quite similar, we only present the graphs for the NFS and Fusion-io
disks. These figures contain 200 time-slice bins. Since total execution time for the NFS run (x-axis) was
462 seconds, each bin represents 2.32 seconds of execution time. Since the y-axis indicates bytes moved per
time-slice, the numbers on the y-axis should be multiplied by 0.43 to give an indication of bytes per second.
Similarly, total execution time for the Fusion-io run was 304 seconds, each bin represents 1.52 seconds of
execution time, so the multiplier to adjust to bytes per second is 0.66.

After adjusting to bytes per second, it appears that the Fusion-io board outperforms the NFS disk by
roughly a factor of two, for the I/O intensive portions of the benchmark. Note that the Fusion-io and
local disk times were about the same, indicating the extent of performance impact observed using the NFS-
mounted data sets.

The differing I/O usage patterns of the eight benchmark modules are clearly evident in the graphs.
Starting from the left-hand-side, we see two bursts of I/O activity, which correspond to the XML-parser and
Keyword Extractor. This is followed by a spike of read-only intensity, which is accounted for by the Stanford
Extractor’s initialization phase, in which a the 11M statistical model is read from file. This is followed by the
extraction process; the lower levels of I/O activity are indicative of the primarily CPU-intensive categorization
of this phase. Another spike of read-only intensity is accounted for by the OpenNLP’s initialization phase,
during which it reads in several statistical models. As for the Stanford Extractor, this initialization phase is
followed by lower levels of I/O activity. Finally, near the right-hand-side of the graphs, there are four clusters
of mixed read/write activity that correspond to the Unifier, Proximator, Tabulator, and Decider modules.
These modules demonstrably have much greater read/write demands than the parser and extractors.
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Figure 4.7: I/O time, Fusion-io. Compared to the previous figure, timing for calls to open and close is vastly
reduced.
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Figure 4.8: I/O time, local. Timing for the local disk is relatively similar to that for the Fusion-io drive,
however, here there is a significant jump in time spent in write, and open/close calls in the last four modules.
These four modules are by far the most I/O intensive of the benchmark. The jump in write/open/close calls
is believed
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Chapter 5

A GPU-Accelerated Image
Resampling Benchmark

5.1 Application Domain

The Large Synoptic Survey Telescope (LSST) will generate 15 Gbytes of data every 15 seconds. This data
must be analyzed in real-time to meet the science goals of the project. The image processing pipeline imposes
significant computational and disk IO requirements on the analysis system. Each image is 9 GBytes.

The first significant step in the pipeline is called source detection. This is used to refine the exact position
on the sky of the image. A source catalog of the sky is read from disk and multiple bright stars are used to
get an accurate pointing. This accurate pointing is referred to as the world coordinate system.

The image is now rescanned using a threshold value to identify each group of contiguous pixels that
exceed some threshold. Astronomical objects are not points and most objects overlap some other object.
To separate these objects into distinct objects, a further sub-thresholding calculation is required. Once
completed, a source catalog is read from disk and each detected object is modified to meet a predetermined
brightness. Atmospheric effects always distort each object from its ideal appearance and a further calculation
is performed on each object to make this correction. Finally, a 36 Gbyte template of the sky is read from
disk and the modified image is subtracted from the corrected source image to determine what objects have
changed. Each changed object is classified into types such as a known variable star, a supernova or nova, a
known moving object like an asteroid, or a newly discovered asteroid. The classification is done by comparing
these objects to known objects and their characteristics in a database. The computational load requires a
27 Teraflop system capable of reading about 50 GBytes of data every 15 seconds.

5.2 Benchmark Implementation

The benchmark factors out a computationally-expensive and fundamental piece of the SWarp [8] functionality
for implementation: greyscale image resampling. The input data is a greyscale raster-image (row-major
order) with 8 or 16 bits per pixel. The output is a greyscale image with 8, 16, or 32 bits per pixel. The
typical SWarp execution for LSST would include resampling of a 16-bit input into a 32-bit, floating-point
output.

5.2.1 Computational Kernels

For each output pixel, a filter kernel is applied that takes a weighted combination of the input pixels. The
SWarp code employs a Lanczos filter to combine either 16 (4x4), 36 (6x6), or 64 (8x8) input pixels to generate
each output pixel.
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kernel TEX1 SIN1 RCP1 MUL2 ADD2 MAD1 MUL1 FLR2 VTot STot
Nearest 1 0 0 0 1 0 0 1 2 3
Lanczos2 16 16 16 25 21 15 16 1 126 173
Lanczos3 36 24 24 49 43 35 24 1 236 328
Lanczos4 64 32 32 81 73 63 32 1 378 533

Table 5.1: Fragment processor operation counts (ordered roughly from most expensive to least expensive)
for each kernel.

The Lanczos filter kernel is convolved with the input pixels to generate the output pixels. Each input
pixel has a location (x, y) relative to the projection of an output pixel into the input image. The weight used
for that input pixels contribution to the output pixel is:

Lk(x, y) =
k sin(πx) sin(π

k x)
π2x2

∗
k sin(πy) sin(π

k y)
π2y2

, |x| < k, |y| < k (5.1)

k may be 2, 3, or 4 (the so-called Lanczos2, Lanczos3, and Lanczos4 kernels), using 16, 36, or 64 input pixels
per output pixel, respectively.

We have written four resampling codes, one for each of the above Lanczos convolution kernels, as well
as a baseline nearest-neighbor resampling using NVIDIA’s Cg programming language. The Cg compiler
compiles the code down to ARB Fragment Program code, which is an OpenGL-supported assembly code for
the fragment programs on current GPUs, and is vendor-neutral. The operation counts in ARB Fragment
Program assembly for our implementation of each of these resampling codes is shown in Table 5.1. The
operations listed are:

• TEX1: Read one input pixel value from texture memory.

• SIN1: One sine computation

• RCP1: One reciprocal computation

• MUL2: Two-way-vectorized multiplication

• ADD2: Two-way vectorized addition

• MAD1: One multiply-and-add computation

• MUL1: One multiplication

• FLR2: Two-way vectorized floor computation

• VTot: Number of operations for a vector processor

• STot: Number of operations for a scalar processor

Because we are benchmarking the recent NVIDIA 8800 GTX, which is a scalar GPU, we have not optimized
the computation for the more traditional 4-way vectorized GPU, which typically can do 4-way operations
at the same cost as a single operation. The philosophy behind the NVIDIA 8XXX series is to provide more
scalar cores (128) rather than fewer vector cores, so it is easier to achieve full utilization.

5.2.2 I/O Methods

In the SWarp implementation, which employs memory-mapped I/O for large files, output pixels are processed
in raster order, matching the order of the data in the disk file, so output is purely streaming, whereas input
requires more random access.
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However, to take best advantage of the significant processing power, memory bandwidth, and data
caching on the GPU, it is more natural to produce the output data in 2D tiles. Each output pixel in the tile
is generated in a separate thread of execution on the GPU.

Data flow in this benchmark is from disk to main memory, main memory to GPU memory, GPU memory
back to main memory, and main memory back to disk. In each case, the data to be moved from source to
target location is specified as a 2D rectangle. If the width of this rectangle is the same as the width of the
source and target, the data copy can occur as a single, contiguous stream. However, if the widths differ,
then the data copy must occur in a strided fashion, contiguous only at the level of individual rows. Strided
copies incur additional overheads, the largest of which are disk seeks if the striding occurs on the disk file
end of a copy between main memory and disk. Striding can also incur more minor overhead when it occurs
between main memory and GPU memory. Note also that support for strided copies is generally built into
GPU drivers, whereas it is not built into the operating system’s file I/O interface and must be built using
some combination of reads, seeks, and buffering.

The computation proceeds one output tile at a time, in row-major order. For each output tile, we
determine the input data required and load that rectangle of data from main memory to the GPU over the
PCI-Express bus. We then perform the computation, and read the data back from GPU to main memory
over PCI-Express.

We have implemented four I/O methods for moving data between the disk and main memory.

1. Basic: This method assumes the input and output data are small enough to fit in-core. Thus, the entire
input data are read with a single read and the entire output data written after the tiled computation
is performed. Note that the GPU typically has less memory than the host system, and there is also
a hard limit on the maximum 2D image size it can operate on. Strided copies are used to move data
between main memory and the GPU memory.

2. MMap: This method uses the operating system’s memory mapped I/O. A blank output file of the
appropriate size is created on disk, then both the input and output files are memory mapped. The
operating system pages data in on-demand and flushes pages as the buffer cache becomes full. This
method appears much like the Basic method, because the entire input and output files are virtually
present in main memory. Thus we still use strided copies between main memory and GPU memory.

3. Block: This method manually loads the appropriate input rectangle for a given output tile using a
sequence of seeks and reads, one for each row. Similarly, it writes each output tile as a sequence of
seeks and writes. Thus, strided copies are used to and from disk. The data is contiguous in main
memory, so strided copies are not needed between main memory and the GPU.

4. Strip: This method loads and stores the disk files using strips, where a strip is a rectangle with the
same height as an input or output tile, and the width is the same as the width of the entire input or
output image. It is effectively a buffered version of the Block method, where the buffer is all the blocks
in a single row of output tiles. Because the entire row is buffered, the file data is now contiguous may
be read or written with a single file operation. GPU tile data transfers are once again strided.

5.3 Performance Evaluation

We have used our benchmark to investigate the potential for accelerating image resampling for applications
such as the LSST project. The test system has the following specifications:

• Operating System: Fedora Core 6 Linux x86 64, kernel 2.6.22.2-42.fc6

• CPU: Dual Intel Xeon 3.0 GHz

• Memory: 4 GB

• GPU: NVIDIA GeForce 8800 GTX
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Figure 5.1: Rate of generated output pixels in logarithmic scale as a function of upsampling scale factor and
kernel size

• GPU Driver: NVIDIA 100.14.11

• GPU Memory: 768 MB

• GPU Bus: PCI-E 16X

• Disk: 2-disk RAID0, local SATA, ext3 filesystem

Our investigation comprised a number of executions of the benchmark and the original SWarp application.
The most informative metric reported for this application is the rate of data output in MB/sec. The
quantitative results are shown in Table 5.2 and plotted in Figures 5.1 and 5.2.

For each execution, we choose a scale factor, which is the ratio of output pixels to input pixels, and a
kernel size, which is the number of input pixels combined to generate each output pixel.

The GPU column indicates the pure computational rate of our GPU-based kernel implementation. This
is measured by running the Basic (in-core) method for disk I/O and disabling data transfers to and from
the GPU and measuring the total compute time by issuing commands to the GPU and then flushing the
pipeline to force it to complete execution. It is not surprising that this rate decreases with increasing kernel
size (number of instructions as a function of kernel size are shown in Table 5.1). What may be less obvious
is the dramatic increase in compute performance as the scaling factor is increased. The is attributable to the
highly effective 2D data (texture) cache on the GPU. As the scale factor is increased, the same neighborhood
of input pixels are used over and over again to generate a neighborhood of output pixels.

The GPU+PCI-E column reports the performance when we now take into account data transfers to
and from the GPU over the PCI-Express bus. The time to read data back from the GPU to the host
generally dominates for two reasons: (1) there is more data to read back from the GPU than to send, due
to the upsampling factor and the doubling in bits per pixel (from 16-bits to 32-bits) and (2) raw download
rates are typically slower than upload rates in general. In truth, we are not achieving the fastest possible
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Figure 5.2: Rate of generated output pixels as a function of upsampling scale factor and kernel size

Scale Kernel GPU GPU+PCI-E GPU+PCI-E+disk SWarp
1 1 475 100 41 4.8
1 16 372 101 42 2.8
1 36 329 99 42 2.1
1 64 239 90 41 2.2
4 1 1706 201 57 7.2
4 16 1143 192 61 3.8
4 36 869 185 61 3.0
4 64 598 168 60 2.4
16 1 4994 259 73 7.3
16 16 2356 248 67 3.8
16 36 1475 231 71 3.0
16 64 896 211 72 2.4

Table 5.2: Output bandwidth, reported in MB/sec, as a function of the upsampling scale factor and kernel
size.
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PCI-E transfer rates in our current benchmark implementation. Due to the intricacies of GPU and driver
optimizations, experiments have shown we can improve PCI-E by roughly a factor of 2X by downloading
data as a 4-channel (RGBA) image rather than a 1-channel (luminance) image. This optimization could
be implemented, for example, by computing 4 horizontally-adjacent output pixels at each thread execution.
However, even if we incorporated such speedup into our benchmark, it could not yet be leveraged due to the
disk I/O bottleneck discussed in the next paragraph.

The GPU+PCI-E+disk column reports the true overall performance of the benchmark on out-of-core
data, using the Strip method of disk I/O (in practice, we have found the Strip method performs comparably
or slightly better than MMap and dramatically better than Block). The maximum output performance
achieved is 73 MB/sec. For the lowest scale factor of 1, this performance is significantly reduced (to around 40
MB/sec), presumably because we require significant input data bandwidth as well as output data bandwidth,
and the input and output files are sharing the same 2-disk RAID (experimentally disabling reading of input
data from disk in this case increased performance to around 70 MB/sec).

To measure the performance of the real SWarp application, we eliminated as many computations as
possible that are extraneous to the benchmark computation. In particular, the resampling is configured to
perform in SWarp’s PIXEL coordinate system, thus avoiding any of the dozens of more complex astrometric
coordinate transformations. It is possible that SWarp is still performing some additional computations that
could not be simply disabled, so direct comparison here should be taken with a grain of salt (however, we
did find that SWarp executed somewhat faster than running the benchmark using the Mesa OpenGL driver
for software-only execution, so the timing of SWarp is not implausible for a CPU-only implementation).
The range of speedups of the GPU implementation compared to SWarp ranged from 9X to 30X. The need
for oversampling and high-quality kernels to produce excellent results argues that the test with the larger
speedups are the more useful ones in practice. SWarp can also be executed in parallel on multi-processor
and multi-core machines, and exhibited a nearly 2X speedup over the listed results when run on the two
processors of the test machine.

Notice that the original SWarp implementation is purely CPU-bound, where the GPU benchmark is
more thoroughly I/O-bound. Thus there is significant room for further speedup if faster I/O were available
(such as the 600 MB/sec write speed recently reported in the news for the Fusion IO PCI-Express NAND
flash memory board). Such faster I/O can bring the speedup closer to the 87X of our current GPU+PCI-E
speedup over SWarp (or the projected 160X speedup of a GPU+PCI-E with the aforementioned 4-channel
readback optimization).

5.4 Conclusions

The image resampling benchmark demonstrates that the use of commodity parallel architecture such as the
GPU can provide dramatic speedup over a single-CPU implementation, up to the point where disk I/O
becomes the primary bottleneck. For the current test system, the I/O limited the speedup to 30X.

In general, it is clear that providing faster out-of-core I/O, especially in terms of write speed for this
application, will enable even more dramatic speedups overall.

For the specific case of LSST software pipeline, the best solution may be to engineer a streaming, out-of-
core data model in which such large and upsampled intermediate data never needs to be written. Thus per-
forming the subsequent computations following resampling, performing data analysis and database queries,
which ultimately reduce the size of output data, would be preferable from a bandwidth point of view, though
it may complicate the software design. It may well be possible to apply commodity parallel architectures to
many stages of the LSST pipeline, making the real-time goals of the project achievable.
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